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Abstract. Heat transfer from a plate placed in a rarefied gas and suddenly heated is 
investigated from the point of view of the kinetic theory of gases. A model kinetic 
equation is solved using the method of moments. Analytical formulae for the density and 
temperature jumps at the surface of the plate are obtained. It is found that in the free 
molecular regime the temperature jump is constant while in the nearly-free molecular 
regime it is a linear function of time. 

1. Introduction 

One of the problems of great interest in aerodynamics is the investigation of the 
behaviour of a rarefied gas near a suddenly heated body. It is important to determine 
the rule governing heat transfer due to collisions of the molecules with solid surfaces 
and collisions between the molecules themselves. Because of rarefaction of the gas 
there must be discontinuities in the macroscopic parameters at the solid surface. The 
jumps in these quantities at the surface due to the discontinuities must be determined. 
The present paper deals with heat transfer from a suddenly heated plate placed in a 
highly rarefied gas; our aim is mainly to determine the density and temperature jumps 
at the surface of the plate. These jumps can be obtained if the density and tempera- 
ture distributions at any instant and at any point are obtained. 

The distribution function is assumed to satisfy the Boltzmann equation and its 
initial form is taken to be Maxwellian. 

Reflection of molecules from the surface is considered completely diffuse, this 
means that the distribution of the molecules reflected from the surface is Maxwellian 
and is dependent on temperature (i.e. the temperature of the plate). At infinity, the 
density and temperature are considered bounded. The collision term is simplified by 
using the model suggested simultaneously by Bhatnagar et a1 (1954) and Wellander 
(1954). The technique used to solve the kinetic equation is the method of moments 
with a two-sided distribution function. This method assumes that at any point in the 
velocity space the distribution function is discontinuous. There are two types of 
molecules: those reflected from the solid surface that do not suffer collisions with 
other molecules and those which are not reflected by the plate; these types have 
different distribution functions. The expression for the distribution function contains 
some unknowns which are determined from the moment equation. In general this 
method can be used to solve non-linear problems. It was proved by Khadr (1970) that 
this method gives better results than other five available methods when solving the 
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problem of Couette flow. Also Kashmarov (1963) uses it to solve the linear problem 
of shear stress. Kashmarov considers the motion of the gas near a plate with constant 
density and temperature which is suddenly moved, he uses the method of moments 
with a two-sided distribution function to get a solution suitable for any density and his 
results agree with the results of other investigators. 

2. Basic equations 

We consider a semi-infinite space, which is bounded by a very long (nearly infinite) 
plate and filled with a fixed rarefied gas. We consider the unsteady heat transfer from 
the infinite plate when it is suddenly heated. It is well known that the distribution 
function satisfies the Boltzmann kinetic equation. In this case the equation has the 
form: 

aF 
at  ay  

Cy-= &F 

where F = F(C, y, t )  is the distribution function, is the velocity of molecules and A$ 
is the collision term of the Boltzmann equation. To solve (1) we shall use the method 
of moments with discontinuous distribution function (Shidlovskiy 1967) as: 

f 

where n1, n2, TI  and T2 are unknown functions of the variables y and t (it is assumed 
that the plate is situated in the plane y = 0). The moments equations are obtained by 
multiplying equation (1) by some dynamical variable &(e) and integrating over 
from -00 to -00; then we have: 

where the integrals over the velocity space are evaluated from: 

To determine the four unknowns n l ,  n2, TI  and T2 we choose four linearly indepen- 
dent functions d i  as: 

( 5  ) 4 4-2c -1 2 cy. 41 = 1, 42 = CY, 43 = c2, 
The calculation of the right-hand side of equation (3) is appreciably simplified by 
approximating the collision term in equation (1) in the form (Bhatnager el a1 1954, 
Wellander 1954) 

where n is the density, R is the gas constant, T is the temperature and (U is the 
viscosity coefficient. This corresponds to the first approximation of the Chapman- 
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Enskog theory (Shidlovskiy 1967) and for the interaction model F = K/d5 (d  being 
the intermolecular distance and K a constant), CL = 2kT(m/2K)1/2/3A2(5) (k is 
Boltzmann’s constant, Az(5) = 1.3682). 

We now define dimensionless variables A, F, j j ,  i as: 

ni = nOiii, T, = Toz, Y = Yl, t = S1/(2RTo)’/’ 

where no is the initial density, To is the temperature of the gas and I the length of the 
plate. Dropping the bars on the dimensionless quantities we get: 

a l a  
- ( n l + n Z ) + T  -(nzT:/2 -nlT:”)= 0 
a t  ay  

(9) 
a 4 a  
at  3 ~ ’  a y  - (n Tl + n2 Tz) + 7 - (n2 - n T?” ) = 0 

= -6 [ f ( n  1 + nz)(nz T;” - n 1 T:12 ) + $(n2 T:l2 - n 1 T :/’ )(n 1 Tl + nz Tz)] , 

S = &oA2(5)(K/kTo)1/2. (10) 
If we consider the initial distribution function to be Maxwellian, then 

nl=n;?=l ,  TI = Tz = 1 a t t = O  (11) 

and the boundary condition for the normal velocity, n V, = C,F d c  = 0, gives 

(12) [nZT:/’ -nlT1 1/2 ] y = O = O .  

The condition that the distribution function of the reflected molecule be Maxwellian 
dependent on temperature (equal to the temperature of the plate) gives: 

Tz(0, t ) =  1 +x’ (13) 

nl, n2, T I  and T2 are considered bounded at y = CO. (14) 

where the plate is assumed heated to the temperature To(l +x’). Also 

To solve equations (7)-(lo), we shall use the small-parameter method; considering x’ 
as the small parameter, and neglecting all terms of order Oh”), we put 

n1= 1 +X’n: ,  = 1 +x’Ti ( i  = 1, 2) 
(15) x = n i + n ; ,  Y = n; -ni ,  Z = T i  + T;, L =  T ;  -Ti .  

Substituting from (15) into (7)-(10) and equating the coefficients of x’ on both sides of 
equations (7)-(10) we get the following partial differential equations: 



65 0 M A  Abdel - Gaid and M A  Khidr 

The initial condition (1 1) becomes: 

Also the boundary conditions (12), (13) are: 

Y(0, t)+$L(O, t ) =  0 

Z(0, t ) +  L(0, t )  = 2 

X, Y, 2, L are bounded at y = m. 

3. The solution in the case of highly rarefied system 

In this case we can neglect the collisions between the particles, i.e. take S = 0 in 
(16)-(19). Using Laplace's transform, the solutions of equations (16)-(19) are Osman 
(1 976) 

X'O)= UlH(t -ay)+a&(r - a ' y )  (24) 
Y @ ) =  blH(t-ay)+b2H(t-a'y) 

Z'O)= ClH(t -ay)+c2H(r -a ' y )  

L(O)= d l H ( t - a y ) + d 2 H ( t - a ' y )  (27) 

where the constants: 

a = 1.8069, a' = 0,8573, ai = -0,7259, a2 = 0.3446, 

bi = -0.9046, c1= 0.2812, di = 0.3849, 

62 = 0,34417, CZ = 0.5928, dz = 0.7410 

and 

t > a y  {: t s ay. 
H(t  - ay)  = 

To solve equations (16)-(19) when the collisions are taken into account, while the 
collision term may be taken small, we use the small-parameter method. The quan- 
tities X, Y, Z and L are expressed as: 
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and the boundary conditions are 

~ ( ~ ' ( 0 ,  t)+&'O)(O, t )  = o 
Z'O'(0, t)+L'O'(O, t ) =  2 

X'O), Y'O), Z'O), L'O) are bounded at y = 00. 

Also the initial and boundary conditions for X'l) ,  Y") ,  Z ( l )  and L") are 

X'"(y, 0 )  = Y'"(y, 0) = Z"'(y, 0) = L'"(y, 0 )  = 0 

Y'"(0, t )  + $L'l)(O, t )  = 0 

Z'"(0, t )  + L'"(0, t )  = 0 

X'", Y'l), Z"', L'l) are bounded at y = m. 

Substituting from (29) in (16)-(19) and equating the coefficients of S on both sides of 
these equations we get partial differential equations for X'l), Y'l), Z'l), L"). Using 
Laplace's transform we can get the solution in the form (Osman 1976) 

X'l )=  (Kit +Rly )H( t  - a y ) +  (Mit + N l y ) H ( t - a ' y )  (30) 

Y")=  (K2f+Rzy)H(t-~y)+(M2t+N2y)H(t-~'y) (31) 

Z' l )=  (K3t + R3y)H(t - ay)+  (M3t +N3y)H(t - U ' Y )  (32) 

L")= (K4t + R * y ) H ( t - ~ y ) +  (M4f + N4y)H(t - U ' Y )  (33) 

where 

K1= -1.8048, MI = 1,8047, R I =  2.4294, N I =  -1.0740, 

KZ = -2.3038, M2= 1.9407, R2= 3.1263, N2 = - 1 1 946, 

K3 1,1544 = R3=-1*7637, N3= 1.8037, 

Kq= 1*5359=-Mq R4=-2*3342= N4. 

5. Discussion of results and conclusions 

The dimensionless average density and temperature are given by 

n = f(n1+ n2) 

T = (n l  TI  + n27'2)/(nl+ n2). 

(1) In the case of highly rarefied gas we get 

n / n o =  1 + ~ ~ ' ( a l ~ ( t - a y ) + a 2 ~ ( t - a ' y ) )  

T/ To = 1 + x' (  a H ( t  - ay ) + D ;H ( t  - a ' y )) 

U ;  = -0.5853, U ;  = 0.6410. 

(2) At the surface of the plate ( y  = 0) we get 

n(O, t ) / no  = 1 +t,y'(al + a21 

T(0, t)/To= l+*'(a'1 + a ; )  

for t>O 

for t > 0. 

(34) 

(35) 
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Then the dimensionless temperature jump 
temperatures) at the surface of the plate will be: 

Ti(O, t ) /  To = Tp - Tg = 1 + X ’  - T(0, t )  = 0 . 9 4 4 3 ~ ‘  

where Tp is the temperature of the plate and Tg is the temperature of the gas. 

constant if collisions between molecules are neglected. 

(the difference between gas and plate 

for t > O  

We conclude that the temperature jump at the surface of the plate at any instant is 

(3) In the case when the collisions are considered we get: 

n (0, t ) /no  = 1 + +x‘[ (a + KISt + R lSy)H(t  - a y )  + (a2 + M16t + NISy)H(t  - a’ y )] 

where 
T(0, t )/ To = 1 + x ’ [ ( A  + BSt + DSy)H(t - ay ) + (A’ + B ’Sf + D’Sy)H(t - U ’ j  )] 

A = -0.5853, B = -1,2276, D = -1.5475, 

A’= 0.6410, B’ = 1.2275, D’ = -0.1721. 

(4) At the surface of the plate (y = 0), there is a temperature jump Tj at any 
instant given by 

Tj(O, t )=  Tp- Tg = (0.9443 + 0.0001St). 

To conclude we remark that the above results are obtained for an infinite plate, 
An interesting problem would be to consider the situation for a plate only partially 
bounding the gas. In this case the solution will contain an accommodation coefficient. 
The analytical solution may be compared with experimental results, which could be 
obtained. From that comparison the behaviour of the accomodation coefficient could 
be investigated. The thermal waves propagated in the gas have a special form and we 
think that these waves may be useful in engineering applications. 
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